Speedups and orbit equivalence of finite extensions of ergodic Z-actions

نویسندگان

  • Aimee S. A. Johnson
  • David M. McClendon
  • DAVID M. MCCLENDON
چکیده

We classify n-point extensions of ergodic Z-actions up to relative orbit equivalence and establish criteria under which one n-point extension of an ergodic Z-action can be sped up to be relatively isomorphic to an n-point extension of another ergodic Z-action. Both results are characterized in terms of an algebraic object associated to each n-point extension which is a conjugacy class of subgroups of the symmetric group on n elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speedups and orbit equivalence of finite extensions of ergodic Zd-actions

We classify n-point extensions of ergodic Z-actions up to relative orbit equivalence and establish criteria under which one n-point extension of an ergodic Z-action can be sped up to be relatively isomorphic to an n-point extension of another ergodic Z-action. Both results are characterized in terms of an algebraic object associated to each n-point extension which is a conjugacy class of subgro...

متن کامل

Cocycle and Orbit Equivalence Superrigidity for Bernoulli Actions of Kazhdan Groups

We prove that if a countable discrete group Γ contains an infinite normal subgroup with the relative property (T) (e.g. Γ = SL(2,Z) ⋉Z, or Γ = H × H with H an infinite Kazhdan group and H arbitrary) and V is a closed subgroup of the group of unitaries of a finite von Neumann algebra (e.g. V countable discrete, or separable compact), then any V-valued measurable cocycle for a Bernoulli Γ-action ...

متن کامل

AN UNCOUNTABLE FAMILY OF NONORBIT EQUIVALENT ACTIONS OF Fn

Recall that two ergodic probability measure preserving (p.m.p.) actions σi for i = 1, 2 of two countable groups Γi on probability measure standard Borel spaces (Xi, μi) are orbit equivalent (OE) if they define partitions of the spaces into orbits that are isomorphic, more precisely, if there exists a measurable, almost everywhere defined isomorphism f : X1 → X2 such that f∗μ1 = μ2 and the Γ1-or...

متن کامل

COCYCLE AND ORBIT EQUIVALENCE SUPERRIGIDITY FOR MALLEABLE ACTIONS OF w-RIGID GROUPS

We prove that if a countable discrete group Γ is w-rigid, i.e. it contains an infinite normal subgroup H with the relative property (T) (e.g. Γ = SL(2,Z) ⋉Z, or Γ = H × H with H an infinite Kazhdan group and H arbitrary), and V is a closed subgroup of the group of unitaries of a finite separable von Neumann algebra (e.g. V countable discrete, or separable compact), then any V-valued measurable ...

متن کامل

The Complexity of Classification Problems in Ergodic Theory

The last two decades have seen the emergence of a theory of set theoretic complexity of classification problems in mathematics. In these lectures we will discuss recent developments concerning the application of this theory to classification problems in ergodic theory. The first lecture will be devoted to a general introduction to this area. The next two lectures will give the basics of Hjorth'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015